Die jüngsten Fortschritte in der molekularen Biotechnologie haben die Diagnose und Behandlung von Krebspatienten grundlegend verändert. Die Entwicklung gezielter Therapien hat bei den meisten Krebsarten die Lebenserwartung und Lebensqualität der Patienten erhöht. Die Vorhersage der Behandlungseffizienz und die Auswahl der für jeden Patienten optimalen personalisierten Therapie bleibt jedoch eine Herausforderung für den Arzt. Vor allem die Entwicklung von Therapieresistenz und intratumouraler Heterogenität begrenzen erfolgreiche langfristige Remissionen und Heilungen. Die frühzeitige Vorhersage von Therapieresistenz oder einem Rückfall gilt daher als entscheidend für eine weitere Verbesserung des Therapieergebnisses. Die Identifizierung von Merkmalen, die als Biomarker bezeichnet werden und die aus Patientenproben durch Hochdurchsatzanalysen gewonnen werden, ist ein wichtiges Mittel, um dieses Ziel zu erreichen. Das Projekt C1 baut und optimiert Modelle für klinisch relevante Entscheidungen in der Onkologie, indem es Merkmale aus hochdimensionalen Merkmalsräumen aus Rohdaten, die auf verschiedenen molekularen Plattformen erstellt wurden, auswählt.
In der Vergangenheit ermöglichte die hochparallele ("Next Generation") DNA-Sequenzierungstechnologie Forschern mit Zugang zu spezialisierten Sequenzierungs-Kerneinrichtungen, tumorspezifische Mutationen zu entdecken. Da die Kapazität der DNA-Sequenzierung weiter steigt und die Kosten immer schneller sinken, als die Rechenleistung und der Speicher Schritt halten können, sind neue algorithmische Paradigmen für die Analyse sehr großer genomischer Datensätze erforderlich. Im Projekt C1 untersuchen wir neue Algorithmen, um relevante Merkmale für die Biomarkererkennung aus Ganzgenom-Datensätzen im Bereich von 10-100 Terabyte auf Standard-Hardware zu extrahieren, indem wir die Sequenzdaten streamen und mit neuartigen String-Hashing-Methoden nach Merkmalen von Interesse filtern.
Jüngste Entwicklungen in der Nanoporen-Sequenzierung sind die Demokratisierung der DNA-Sequenzierung und der Genomanalyse. Die neuen Nanoporen-Sequenzer sind von vergleichbarer Größe wie ein USB-Stick, kostengünstig und können ohne spezielle Laborausrüstung eingesetzt werden. Während die Nanoporen-Sequenzierung derzeit einen geringeren Durchsatz und höhere Fehlerraten als etablierte Technologien bietet, hat sie das Potenzial, die DNA-Sequenzierung und die anschließende genomische Analyse zu einem Gut zu machen. In der Onkologie ist die Vision, dass die Nanoporen-Sequenzierung zusammen mit nicht-invasiven Patientenüberwachungstechniken wie "Flüssigbiopsien" aus Blut oder Urin den Nachweis kleiner Mengen zirkulierender Tumor-DNAs ermöglicht, was eine genaue Beurteilung des Patientenrisikos und der Therapiemöglichkeiten ermöglicht. Im Prinzip wäre eine solche Bewertung bei moderater Serienausstattung, d.h. Sequenzer und Laptop oder Embedded System, jederzeit und überall möglich.
Damit diese Vision Wirklichkeit werden kann, müssen mehrere Herausforderungen bei der Datenanalyse bewältigt werden: Neben den Einschränkungen durch die geringe Stichprobengröße n im Vergleich zur hohen Dimensionalität p des Merkmalsraums (n << p-Problem) schaffen die cyberphysikalischen Systeme zur Nanoporen-Sequenzierung neue Ressourcenbeschränkungen: Die Rohdaten, die durch diese neue Technologie erzeugt werden, sind ein großvolumiges hochfrequentes Signal von Ionenströmen, das sich nur schwer direkt in eine DNA-Sequenz übersetzen lässt. Um Tumor-Fingerabdrücke oder Biomarker zu identifizieren, die auf der Verfolgung von aus Tumoren gewonnenen Nukleinsäuren basieren, sind daher entweder bessere Methoden für den DNA-Basenabruf aus Ionenströmen erforderlich, oder es muss eine andere Darstellung der Tumor-Fingerabdrücke, wie beispielsweise Merkmale im Signalraum, berücksichtigt werden. Wir werden beide Wege parallel verfolgen und uns insbesondere mit neuen Merkmalen befassen, die sich aus einem diskretisierten komprimierten Ionenstromsignalraum ergeben.
| Moelder/etal/2021a |
Mölder, Felix and Jablonski, Kim Philipp and Letcher, Brice and Hall, Michael B. and Tomkins-Tinch, Christopher H. and Sochat, Vanessa and Forster, Jan and Lee, Soohyun and Twardziok, Sven O. and Kanitz, Alexander and Wilm, Andreas and Holtgrewe, Manuel and Rahmann, Sven and Nahnsen, Sven and Köster, Johannes.
Sustainable data analysis with Snakemake.
In
F1000Research,
Vol. 10,
Seiten 33,
2021.
|
| Zentgraf/Rahmann/2021a |
Jens Zentgraf and Sven Rahmann.
Fast lightweight accurate xenograft sorting.
In
Algorithms Mol. Biol.,
Vol. 16,
No. 1,
Seiten 2,
2021.
|
| Kuthe/Rahmann/2020a |
Elias Kuthe and Sven Rahmann.
Engineering Fused Lasso Solvers on Trees.
In
Simone Faro and Domenico Cantone (editors),
18th International Symposium on Experimental Algorithms, SEA 2020, June 16-18, 2020, Catania, Italy,
Vol. 160,
Seiten 23:1--23:14,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020.
|
| Oeck/etal/2020a |
Oeck, Sebastian and Tüns, Alicia I. and Hurst, Sebastian and Schramm, Alexander.
Streamlining Quantitative Analysis of Long RNA Sequencing Reads.
In
International Journal of Molecular Sciences,
Vol. 21,
No. 19,
2020.
|
| Zentgraf/etal/2020a |
Jens Zentgraf and Henning Timm and Sven Rahmann.
Cost-optimal assignment of elements in genome-scale multi-way bucketed Cuckoo hash tables.
In
Proceedings of the Symposium on Algorithm Engineering and Experiments (ALENEX) 2020,
Seiten 186--198,
SIAM,
2020.
|
| Zentgraf/Rahmann/2020a |
Jens Zentgraf and Sven Rahmann.
Fast Lightweight Accurate Xenograft Sorting.
In
Carl Kingsford and Nadia Pisanti (editors),
20th International Workshop on Algorithms in Bioinformatics (WABI 2020),
Vol. 172,
Seiten 4:1--4:16,
Dagstuhl, Germany,
Schloss Dagstuhl--Leibniz-Zentrum für Informatik,
2020.
|
| Hess/etal/2019a |
Hess, Sibylle and Duivesteijn, Wouter and Honysz, Philipp-Jan and Morik, Katharina.
The SpectACl of Nonconvex Clustering: a Spectral Approach to Density-Based Clustering.
In
AAAI,
2019.
|
| Stoecker/etal/2019a |
Bianca K. St\"ocker and Till Sch\"afer and Petra Mutzel and Johannes K\"oster and Nils M. Kriege and Sven Rahmann.
Protein Complex Similarity Based on Weisfeiler-Lehman Labeling.
In
Giuseppe Amato and Claudio Gennaro and Vincent Oria and Milos Radovanovic (editors),
Similarity Search and Applications,
Seiten 308--322,
Cham,
Springer,
2019.
title = {Protein Complex Similarity Based on {W}eisfeiler-{L}ehman Labeling}, address = {Cham}, booktitle = {Similarity Search and Applications}, editor = {Giuseppe Amato and Claudio Gennaro and Vincent Oria and Milos Radovanovic}, year = {2019}, pages = {308--322}, publisher = {Springer International Publishing}, isbn = {978-3-030-32047-8}, abstract = {Proteins in living cells rarely act alone, but instead perform their functions together with other proteins in so-called protein complexes. Being able to quantify the similarity between two protein complexes is essential for numerous applications, e.g. for database searches of complexes that are similar to a given input complex. While the similarity problem has been extensively studied on single proteins and protein families, there is very little existing work on modeling and computing the similarity between protein complexes. Because protein complexes can be naturally modeled as graphs, in principle general graph similarity measures may be used, but these are often computationally hard to obtain and do not take typical properties of protein complexes into account. Here we propose a parametric family of similarity measures based on Weisfeiler-Lehman labeling. We evaluate it on simulated complexes of the extended human integrin adhesome network. We show that the defined family of similarity measures is in good agreement with edit similarity, a similarity measure derived from graph edit distance, but can be computed more efficiently. It can therefore be used in large-scale studies and serve as a basis for further refinements of modeling protein complex similarity.} }')">
|
| Ackermann/etal/2018a |
Ackermann, S. and Cartolano, M. and Hero, B. and Welte, A. and Kahlert, Y. and Roderwieser, A. and Bartenhagen, C. and Walter, E. and Gecht, J. and Kerschke, L. and Volland, R. and Menon, R. and Heuckmann, J. M. and Gartlgruber, M. and Hartlieb, S. and Henrich, K. O. and Okonechnikov, K. and Altmuller, J. and Nurnberg, P. and Lefever, S. and de Wilde, B. and Sand, F. and Ikram, F. and Rosswog, C. and Fischer, J. and Theissen, J. and Hertwig, F. and Singhi, A. D. and Simon, T. and Vogel, W. and Perner, S. and Krug, B. and Schmidt, M. and Rahmann, S. and Achter, V. and Lang, U. and Vokuhl, C. and Ortmann, M. and Buttner, R. and Eggert, A. and Speleman, F. and O'Sullivan, R. J. and Thomas, R. K. and Berthold, F. and Vandesompele, J. and Schramm, A. and Westermann, F. and Schulte, J. H. and Peifer, M. and Fischer, M..
A mechanistic classification of clinical phenotypes in neuroblastoma.
In
Science,
Vol. 362,
No. 6419,
Seiten 1165--1170,
2018.
|
| Hess/etal/2018a |
Hess, Sibylle and Piatkowski, Nico and Morik, Katharina.
The Trustworthy Pal: Controlling the False Discovery Rate in Boolean Matrix Factorization.
In
Proceedings of the 2018 SIAM International Conference on Data Mining, SDM 2018, May 3-5, 2018, San Diego Marriott Mission Valley, San Diego, CA, USA.,
Seiten 405--413,
SIAM,
2018.
|
| Schulte/etal/2018a |
Schulte, M. and Köster, J. and Rahmann, S. and Schramm, A..
Cancer evolution, mutations, and clonal selection in relapse neuroblastoma.
In
Cell Tissue Research,
Vol. 372,
No. 2,
Seiten 263--268,
2018.
|
| Stoecker/etal/2018a |
Stöcker, Bianca K. and Schäfer, Till and Mutzel, Petra and Köster, Johannes and Kriege, Nils and Rahmann, Sven.
Protein Complex Similarity Based on Weisfeiler-Lehman Labeling.
In
PeerJ Preprints,
Vol. 6,
No. e26612,
2018.
|
| Hess/etal/2017a |
Hess, Sibylle and Morik, Katharina and Piatkowski, Nico.
The PRIMPING routine---Tiling through proximal alternating linearized minimization.
In
Data Mining and Knowledge Discovery,
Vol. 31,
No. 4,
Seiten 1090--1131,
2017.
|
| Hess/Morik/2017a |
Hess, Sibylle and Morik, Katharina.
C-SALT: Mining Class-Specific ALTerations in Boolean Matrix Factorization.
In
Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2017,
Springer,
2017.
|
| Horsch/etal/2017b |
Horsch, Salome and Kopczynski, Dominik and Kuthe, Elias and Baumbach, Jörg Ingo and Rahmann, Sven and Rahnenführer, Jörg.
A detailed comparison of analysis processes for MCC-IMS data in disease classification---Automated methods can replace manual peak annotations.
In
PLOS ONE,
Vol. 12,
No. 9,
Seiten e0184321,
2017.
|
| Quedenfeld/Rahmann/2017a |
Jens Quedenfeld and Sven Rahmann.
Analysis of Min-Hashing for Variant Tolerant DNA Read Mapping.
In
Russell Schwartz and Knut Reinert (editors),
17th International Workshop on Algorithms in Bioinformatics, WABI 2017, August 21-23, 2017, Boston, MA, USA,
Vol. 88,
Seiten 21:1--21:13,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2017.
|
| Schroeder/Rahmann/2017a |
Schröder, Christopher and Rahmann, Sven.
A hybrid parameter estimation algorithm for beta mixtures and applications to methylation state classification.
In
Algorithms for Molecular Biology,
Vol. 12,
Seiten 21,
2017.
|
| Shpacovitch/etal/2017a |
Shpacovitch, Victoria and Sidorenko, Irina and Lenssen, Jan Eric and Temchura, Vladimir and Weichert, Frank and Müller, Heinrich and Überla, Klaus and Zybin, Alexander and Schramm, Alexander and Hergenröder, Roland.
Application of the PAMONO-sensor for Quantification of Microvesicles and Determination of Nano-particle Size Distribution.
In
Sensors,
Vol. 17,
No. 2,
Seiten 1-14,
2017.
|
| Althoff/Schulte/2016a |
Althoff, Kristina and Schulte, Johannes and Schramm, Alexander.
Towards diagnostic application of non-coding RNAs in neuroblastoma.
In
Expert Review of Molecular Diagnostics,
Vol. 16,
No. 12,
Seiten 1307-1313,
2016.
|
| Consortium/2016a |
The Computational Pan-Genomics Consortium.
Computational pan-genomics: status, promises and challenges.
In
Briefings in Bioinformatics,
2016.
|
| Johansson/etal/2016a |
Johansson, Patricia and Bergmann, Anke and Rahmann, Sven and Wohlers, Inken and Scholtysik, René and Przekopowitz, Martina and Seifert, Marc and Tschurtschenthaler, Gertraud and Webersinke, Gerald and Jäger, Ulrich and Siebert, Reiner and Klein-Hitpass, Ludger and Dührsen, Ulrich and Dürig, Jan and Küppers, Ralf.
Recurrent alterations of TNFAIP3 (A20) in T-cell large granular lymphocytic leukemia.
In
International Journal of Cancer,
Vol. 138,
No. 1,
Seiten 121--124,
2016.
|
| Kliewer/Lee/2016a |
Kliewer, Viktoria and Lee, Sangkyun.
EasyTCGA: An R package for easy batch downloading of TCGA data from FireBrowse.
No. 4,
TU Dortmund,
2016.
|
| Lee/etal/2016a |
Lee, Sangkyun and Brzyski, Damian and Bogdan, Malgorzata.
Fast Saddle-Point Algorithm for Generalized Dantzig Selector and FDR Control with the Ordered l1-Norm.
In
Arthur Gretton and Christian C. Robert (editors),
Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS),
Seiten 780--789,
JMLR W&CP,
2016.
|
| Lee/Holzinger/2016a |
Sangkyun Lee and Andreas Holzinger.
Knowledge Discovery from Complex High Dimensional Data.
In
Stefan Michaelis and Nico Piatkowski and Marco Stolpe (editors),
Solving Large Scale Learning Tasks. Challenges and Algorithms - Essays Dedicated to Katharina Morik on the Occasion of Her 60th Birthday,
Vol. 9580,
Seiten 148--167,
Springer,
2016.
|
| Piatkowski/etal/2016a |
Piatkowski, Nico and Lee, Sangkyun and Morik, Katharina.
Integer undirected graphical models for resource-constrained systems.
In
Neurocomputing,
Vol. 173,
No. 1,
Seiten 9--23,
Elsevier,
2016.
|
| Riehl/Schulte/2016a |
Riehl, Lara and Schulte, Johannes and Mulaw, Medhanie and Dahlhaus, Maike and Fischer, Matthias and Schramm, Alexander and Eggert, Angelika and Debatin, Klaus-Michael and Beltinger, Christian.
The mitochondrial genetic landscape in neuroblastoma from tumor initiation to relapse.
In
Oncotarget,
Vol. 7,
Seiten 6620-6625,
2016.
|
| Schramm/Lode/2016a |
Schramm, Alexander and Lode, Holger.
MYCN-targeting vaccines and immunotherapeutics.
In
Human Vaccines & Immunotherapeutics,
Vol. 12,
No. 9,
Seiten 2257-2258,
2016.
|
| Schroeder/Rahmann/2016a |
Christopher Schröder and Sven Rahmann.
A Hybrid Parameter Estimation Algorithm for Beta Mixtures and Applications to Methylation State Classification.
In
Martin C. Frith and Christian Nørgaard Storm Pedersen (editors),
Algorithms in Bioinformatics - 16th International Workshop, WABI 2016, Aarhus, Denmark, August 22--24, 2016. Proceedings,
Vol. 9838,
Seiten 307--319,
Springer,
2016.
|
| Stoecker/etal/2016a |
Stöcker, B. K. and Köster, J. and Rahmann, S..
SimLoRD: Simulation of Long Read Data.
In
Bioinformatics,
Vol. 32,
No. 17,
Seiten 2704--2706,
2016.
|
| Berulava/etal/2015a |
Berulava, Tea and Rahmann, Sven and Rademacher, Katrin and Klein-Hitpass, Ludger and Horsthemke, Bernhard.
N6-Adenosine Methylation in miRNAs.
In
PLoS One,
Vol. 10,
No. 2,
Seiten e0118438,
2015.
|
| Hesse/etal/2015a |
Nina Hesse and Christopher Schröder and Sven Rahmann.
An optimization approach to detect differentially methylated regions from Whole Genome Bisulfite Sequencing data.
In
PeerJ PrePrints,
Vol. 3,
Seiten e1287,
2015.
|
| Lee/2015a |
Sangkyun Lee.
Signature Selection for Grouped Features with A Case Study on Exon Microarrays.
In
Urszula Stańczyk and Lakhmi C. Jain (editors),
Feature Selection for Data and Pattern Classification,
Seiten 329--349,
Springer,
2015.
|
| Lee/etal/2015b |
Lee, Sangkyun and Brzyski, Damian and Bogdan, Malgorzata.
Fast Saddle-Point Algorithm for Generalized Dantzig Selector and FDR Control with the Ordered $\ell_1$-Norm.
In
19th International Conference on Artificial Intelligence and Statistics,
2015.
|
| Schramm/etal/2015a |
Schramm, Alexander and Köster, Johannes and Assenov, Yassen and Althoff, Kristina and Peifer, Martin and Mahlow, Ellen and Odersky, Andrea and Beisser, Daniela and Ernst, Corinna and Henssen, Anton G. and Stephan, Harald and Schröder, Christopher and Heukamp, Lukas and Engesser, Anne and Kahlert, Yvonne and Theissen, Jessica and Hero, Barbara and Roels, Frederik and Altmüller, Janine and Nürnberg, Peter and Astrahantseff, Kathy and Gloeckner, Christian and De Preter, Katleen and Plass, Christoph and Lee, Sangkyun and Lode, Holger N. and Henrich, Kai-Oliver and Gartlgruber, Moritz and Speleman, Frank and Schmezer, Peter and Westermann, Frank and Rahmann, Sven and Fischer, Matthias and Eggert, Angelika and Schulte, Johannes H..
Mutational dynamics between primary and relapse neuroblastomas.
In
Nature Genetics,
Vol. 47,
No. 8,
Seiten 872--877,
2015.
|
| Schroeder/Rahmann/2015a |
Christopher Schröder and Sven Rahmann.
Efficient duplicate rate estimation from subsamples of sequencing libraries.
In
PeerJ PrePrints,
Vol. 3,
Seiten e1298,
2015.
|
| Schwermer/Lee/2015a |
Schwermer, Melanie and Lee, Sangkyun and Köster, Johannes and van Maerken, Tom and Stephan, Harald and Eggert, Angelika and Morik, Katharina and Schulte, Johannes H. and Schramm, Alexander.
Sensitivity to cdk1-inhibition is modulated by p53 status in preclinical models of embryonal tumors.
In
Oncotarget,
2015.
|
| Artikis/etal/2014a |
Alexander Artikis and Matthias Weidlich and Francois Schnitzler and Ioannis Boutsis and Thomas Liebig and Nico Piatkowski and Christian Bockermann and Katharina Morik and Vana Kalogeraki and Jakub Marecek and Avigdor Gal and Shie Mannor and Dimitrios Gunopulos and Dermot Kinane.
Heterogeneous Stream Processing and Crowdsourcing for Urban Traffic Management.
In
Proceedings of the 17th International Conference on Extending Database Technology,
2014.
|
| Koester/Rahmann/2014a |
Johannes Köster and Sven Rahmann.
Massively parallel read mapping on GPUs with the q-group index and PEANUT.
In
PeerJ,
Vol. 2,
Seiten e606,
2014.
|
| Lee/2014a |
Lee, Sangkyun.
Sparse Inverse Covariance Estimation for Graph Representation of Feature Structure.
In
Holzinger, Andreas and Jurisica, Igor (editors),
Interactive Knowledge Discovery and Data Mining in Biomedical Informatics,
Vol. 8401,
Seiten 227--240,
Springer,
2014.
|
| Lee/2014b |
Lee, Sangkyun.
Characterization of Subgroup Patterns from Graphical Representation of Genomic Data.
In
\'Sl\c ezak, Dominik and Tan, Ah-Hwee and Peters, JamesF. and Schwabe, Lars (editors),
Brain Informatics and Health,
Vol. 8609,
Seiten 516--527,
Springer,
2014.
|
| Lee/etal/2014a |
Sangkyun Lee and Jörg Rahnenführer and Michel Lang and Katleen de Preter and Pieter Mestdagh and Jan Koster and Rogier Versteeg and Raymond Stallings and Luigi Varesio and Shahab Asgharzadeh and Johannes Schulte and Kathrin Fielitz and Melanie Heilmann and Katharina Morik and Alexander Schramm.
Robust Selection of Cancer Survival Signatures from High-Throughput Genomic Data Using Two-Fold Subsampling.
In
PLoS ONE,
Vol. 9,
Seiten e108818,
2014.
|
| Lee/Poelitz/2014a |
Lee, Sangkyun and Pölitz, Christian.
Kernel Completion for Learning Consensus Support Vector Machines in Bandwidth-Limited Sensor Networks.
In
International Conference on Pattern Recognition Applications and Methods,
2014.
|
| Liebig/etal/2014d |
Thomas Liebig and Nico Piatkowski and Christian Bockermann and Katharina Morik.
Route Planning with Real-Time Traffic Predictions.
In
Proceedings of the LWA 2014 Workshops: KDML, IR, FGWM,
Seiten 83-94,
2014.
|
| Piatkowski/etal/2014a |
Piatkowski, Nico and Sangkyun, Lee and Morik,Katharina.
The Integer Approximation of Undirected Graphical Models.
In
De Marsico, Maria and Tabbone, Antoine and Fred, Ana (editors),
ICPRAM 2014 - Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods, ESEO, Angers, Loire Valley, France, 6-8 March, 2014,
Seiten 296--304,
SciTePress,
2014.
|
| Schnitzler/etal/2014b |
Schnitzler, Francois and Artikis, Alexander and Weidlich, Matthias and Boutsis, Ioannis and Liebig, Thomas and Piatkowski, Nico and Bockermann, Christian and Morik, Katharina and Kalogeraki, Vana and Marecek, Jakub and Gal, Avigdor and Mannor, Shie and Kinane, Dermot and Gunopulos, Dimitrios.
Heterogeneous Stream Processing and Crowdsourcing for Traffic Monitoring: Highlights.
In
Proceedings of the European Conference on Machine Learning (ECML), Nectar Track,
Seiten 520-523,
Springer,
2014.
|
| Lee/Schramm/2013a |
Lee, Sangkyun and Schramm, Alexander.
Preprocessing of Affymetrix Exon Expression Arrays.
No. 3,
Technische Universität Dortmund,
2013.
|
| Lee/Wright/2013a |
Lee, Sangkyun and Wright, Stephen J..
Stochastic Subgradient Estimation Training for Support Vector Machines.
In
Latorre Carmona, Pedro and S\'anchez, J. Salvador and Fred, Ana L.N. (editors),
Mathematical Methodologies in Pattern Recognition and Machine Learning,
Vol. 30,
Seiten 67--82,
Springer,
2013.
|
| Rahmann/etal/2013a |
Sven Rahmann and Marcel Martin and Johannes H. Schulte and Johannes Köster and Tobias Marschall and Alexander Schramm.
Identifying Transcriptional miRNA Biomarkers by Integrating High-Throughput Sequencing and Real-Time PCR Data.
In
Methods,
Vol. 59,
No. 1,
Seiten 154--163,
2013.
|
| Schramm/etal/2012a |
Alexander Schramm and Johannes Köster and Tobias Marschall and Marcel Martin and Melanie Heilmann and Kathrin Fielitz and Gabriele Büchel and Matthias Barann and Daniela Esser and Philip Rosenstiel and Sven Rahmann and Angelika Eggert and Johannes H. Schulte.
Next-generation RNA sequencing reveals differential expression of MYCN target genes and suggests the mTOR pathway as a promising therapy target in MYCN-amplified neuroblastoma.
In
International Journal of Cancer,
Vol. 132,
No. 3,
Seiten 154--163,
2013.
|
| Schulte/etal/2013a |
Schulte, J H and Lindner, S and Bohrer, A and Maurer, J and De Preter, K and Lefever, S and Heukamp, L and Schulte, S and Molenaar, J and Versteeg, R and Thor, T and Künkele, A and Vandesompele, J and Speleman, F and Schorle, H and Eggert, A and Schramm, A.
MYCN and ALKF1174L are sufficient to drive neuroblastoma development from neural crest progenitor cells.
In
Oncogene,
Vol. 32,
No. 8,
Seiten 1059--1065,
2013.
|
| Lee/2012a |
Lee, Sangkyun.
Improving Confidence of Dual Averaging Stochastic Online Learning via Aggregation.
In
German Conference on Artificial Intelligence (KI 2012),
Seiten 229--232,
2012.
|
| Lee/etal/2012a |
Lee, S. and Stolpe, M. and Morik, K..
Separable Approximate Optimization of Support Vector Machines for Distributed Sensing.
In
Flach, Peter A. and De Bie, Tijland and Cristianini, Nello (editors),
Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2012, Bristol, UK, September 24-28, 2012. Proceedings, Part II,
Vol. 7524,
Seiten 387--402,
Springer,
2012.
|
| Lee/Wright/2012a |
Lee, Sangkyun and Wright, Stephen J..
ASSET: Approximate Stochastic Subgradient Estimation Training for Support Vector Machines.
In
International Conference on Pattern Recognition Applications and Methods (ICPRAM 2012),
Seiten 223-228,
2012.
|
| Lee/Wright/2012b |
Lee, Sangkyun and Wright, Stephen J..
Manifold Identification in Dual Averaging Methods for Regularized Stochastic Online Learning.
In
Journal of Machine Learning Research,
Vol. 13,
Seiten 1705--1744,
2012.
|
| Molenaar/etal/2012a |
Molenaar, Jan J and Domingo-Fernandez, Raquel and Ebus, Marli E and Lindner, Sven and Koster, Jan and Drabek, Ksenija and Mestdagh, Pieter and van Sluis, Peter and Valentijn, Linda J and van Nes, Johan and Broekmans, Marloes and Haneveld, Franciska and Volckmann, Richard and Bray, Isabella and Heukamp, Lukas and Sprussel, Annika and Thor, Theresa and Kieckbusch, Kristina and Klein-Hitpass, Ludger and Fischer, Matthias and Vandesompele, Jo and Schramm, Alexander and van Noesel, Max M and Varesio, Luigi and Speleman, Frank and Eggert, Angelika and Stallings, Raymond L and Caron, Huib N and Versteeg, Rogier and Schulte, Johannes H.
LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression.
In
Nature Genetics,
Vol. 44,
No. 11,
Seiten 1199--1206,
2012.
|
| Piatkowski/etal/2012a |
Piatkowski, Nico and Lee, Sangkyun and Morik, Katharina.
Spatio-Temporal Models For Sustainability.
In
Marwah, Manish and Ramakrishnan, Naren and Berges, Mario and Kolter, Zico (editors),
Proceedings of the SustKDD Workshop within ACM KDD 2012,
ACM,
2012.
|
| Schramm/etal/2012b |
Alexander Schramm and Benjamin Schowe and Kathrin Fielitz and Melanie Heilmann and Marcel Martin and Tobias Marschall and Johannes Köster and Jo Vandesompele and Joelle Vermeulen and Katleen de Preter, Jan Koster and Rogier Versteeg and Rosa Noguera and Frank Speleman and Sven Rahmann and Angelika Eggert and Katharina Morik and and Johannes H. Schulte.
Exon-level expression analyses identify MYCN and NTRK1 as major determinants of alternative exon usage and robustly predict primary neuroblastoma outcome.
In
British Journal of Cancer,
Vol. 107,
No. 8,
Seiten 1409--1417,
2012.
|
| Umaashankar/Lee/2012a |
Umaashankar, Venkatesh and Lee, Sangkyun.
Optimization plugin for RapidMiner.
No. 4,
TU Dortmund University,
2012.
|
| Esser/etal/2011a |
Esser, R. and Glienke, W. and Bochennek, K. and Erben, S. and Quaiser, A. and Pieper, C. and Eggert, A. and Schramm, A. and Astrahantseff, K. and Hansmann, M. L. and Schwabe, D. and Klingebiel, T. and Koehl U..
Detection of Neuroblastoma Cells during Clinical Follow Up: Advanced Flow Cytometry and RT-PCR for Tyrosine Hydroxylase Using Both Conventional and Real-Time PCR.
In
Klin Padiatr,
Vol. 223,
Seiten 326-331,
2011.
|
| Lee/Bockermann/2011a |
Lee, Sangkyun and Bockermann, Christian.
Scalable stochastic gradient descent with improved confidence.
In
Big Learning -- Algorithms, Systems, and Tools for Learning at Scale,
2011.
|
| Lee/etal/2011a |
Lee, Sangkyun and Schowe, Benjamin and Sivakumar, Viswanath and Morik, Katharina.
Feature Selection for High-Dimensional Data with RapidMiner.
No. 1,
TU Dortmund University,
2011.
|
| Schowe/Morik/2011b |
Schowe, Benjamin and Morik, Katharina.
Fast-Ensembles of Minimum Redundancy Feature Selection.
In
Okun, Oleg and Valentini, Giorgio and Re, Matteo (editors),
Ensembles in Machine Learning Applications,
Seiten 75--95,
Springer,
2011.
|
| Koester/2014a |
Köster, Johannes.
Parallelization, Scalability, and Reproducibility in Next Generation Sequencing Analysis.
TU Dortmund,
2014.
|
| Martin/2013a |
Marcel Martin.
Algorithms and Tools for the Analysis of High-Thoughput DNA Sequencing Data.
TU Dortmund,
2013.
|
| Hess/2015a |
Hess, Sibylle.
Untersuchung von Code-Tabellen zur Kompression von binären Datenbanken.
TU Dortmund,
2015.
|
| Schwitalla/2015a |
Martin Schwitalla.
Optimierung von Genomsequenzanalysen mit Hauptspeicherdatenbanksystemen.
TU Dortmund,
2015.
|
| Egorov/2012a |
Egorov, Alexey.
Logistic regression with group ell 1 vs. elastic net regularization.
TU Dortmund,
2012.
|
| Morik/2010a |
Morik, Katharina.
Medicine: Applications in Machine Learning.
In
Sammut, Claude and Webb, Geoffrey I. (editors),
Encyclopedia of Machine Learning,
Seiten 654-661,
Springer,
2010.
|
| Schulte/Schowe/2010a |
Johannes H. Schulte and Benjamin Schowe and Pieter Mestdagh and Lars Kaderali and Prabhav Kalaghatgi and Stefanie Schlierf and Joelle Vermeulen and Bent Brockmeyer and Kristian Pajtler and Theresa Thor and Katleen de Preter and Frank Speleman and Katharina Morik and Angelika Eggert and Jo Vandesompele and Alexander Schramm.
Accurate Prediction of Neuroblastoma Outcome based on miRNA Expression Profiles.
In
International Journal of Cancer,
2010.
|
| Huebener/etal/2009a |
Huebener, N. and Fest, S. and Hilt, K. and Schramm, A. and Eggert, A. and Durmus, T. and Woehler, A. and Stermann, A. and Bleeke, M. and Baykan, B. and Weixler, S. and Gaedicke, G. and Lode, H. N..
Xenogeneic immunization with human tyrosine hydroxylase DNA vaccines suppresses growth of established neuroblastoma.
In
Molecular Cancer Therapeutics,
Vol. 8,
No. 8,
Seiten 2392-401,
2009.
|
| Schramm/Mierswa/2009a |
Schramm, Alexander and Mierswa, Ingo and Kaderali, Lars and Morik, Katharina and Eggert, Angelika and Schulte, Johannes H..
Reanalysis of neuroblastoma expression profiling data using improved methodology and extended follow-up increases validity of outcome prediction.
In
Cancer Letters,
Vol. 282,
No. 1,
Seiten 56--62,
2009.
|
| Schulte/etal/2009a |
Schulte, J. H. and Horn, S. and Schlierf, S. and Schramm, A. and Heukamp, L. C. and Christiansen, H. and Buettner, R. and Berwanger, B. and Eggert, A..
MicroRNAs in the pathogenesis of neuroblastoma.
In
Cancer Letters,
Vol. 274,
No. 1,
Seiten 10-5,
2009.
|
| Schulte/etal/2009b |
Schulte, J. H. and Pentek, F. and Hartmann, W. and Schramm, A. and Friedrichs, N. and Ora, I. and Koster, J. and Versteeg, R. and Kirfel, J. and Buettner, R. and Eggert, A..
The low-affinity neurotrophin receptor, p75, is upregulated in ganglioneuroblastoma/ganglioneuroma and reduces tumorigenicity of neuroblastoma cells in vivo.
In
International Journal of Cancer,
Vol. 124,
No. 10,
Seiten 2488-94,
2009.
|
| Schulte/etal/2009c |
Schulte, J. H. and Lim, S. and Schramm, A. and Friedrichs, N. and Koster, J. and Versteeg, R. and Ora, I. and Pajtler, K. and Klein-Hitpass, L. and Kuhfittig-Kulle, S. and Metzger, E. and Schule, R. and Eggert, A. and Buettner, R. and Kirfel, J..
Lysine-specific demethylase 1 is strongly expressed in poorly differentiated neuroblastoma: implications for therapy.
In
Cancer Research,
Vol. 69,
No. 5,
Seiten 2065-71,
2009.
|
| Schulte/etal/2008a |
Schulte, J. H. and Kuhfittig-Kulle, S. and Klein-Hitpass, L. and Schramm, A. and Biard, D. S. and Pfeiffer, P. and Eggert, A..
Expression of the TrkA or TrkB receptor tyrosine kinase alters the double-strand break (DSB) repair capacity of SY5Y neuroblastoma cells.
In
DNA Repair (Amst),
Vol. 7,
No. 10,
Seiten 1757-64,
2008.
|
| Vandesompele/etal/2008a |
Vandesompele, J. and Michels, E. and De Preter, K. and Menten, B. and Schramm, A. and Eggert, A. and Ambros, P. F. and Combaret, V. and Francotte, N. and Antonacci, F. and De Paepe, A. and Laureys, G. and Speleman, F. and Van Roy, N..
Identification of 2 putative critical segments of 17q gain in neuroblastoma through integrative genomics.
In
International Journal of Cancer,
Vol. 122,
No. 5,
Seiten 1177-82,
2008.
|
| Schramm/etal/2007a |
Schramm, A. and Vandesompele, J. and Schulte, J. H. and Dreesmann, S. and Kaderali, L. and Brors, B. and Eils, R. and Speleman, F. and Eggert, A..
Translating expression profiling into a clinically feasible test to predict neuroblastoma outcome.
In
Clinical Cancer Research,
Vol. 13,
No. 5,
Seiten 1459-65,
2007.
|
| Collobert/etal/2006a |
Collobert, Ronan and Sinz, Fabian and Weston, Jason and Bottou, Léon.
Large Scale Transductive SVMs.
In
Journal of Machine Learning Research,
Vol. 7,
Seiten 1687--1712,
2006.
|
| Scaruffi/etal/2005a |
Scaruffi, P. and Valent, A. and Schramm, A. and Astrahantseff, K. and Eggert, A. and Tonini, G. P..
Application of microarray-based technology to neuroblastoma.
In
Cancer Letters,
Vol. 228,
No. 1-2,
Seiten 13-20,
2005.
|
| Schramm/etal/2005a |
Schramm, A. and Schulte, J. H. and Klein-Hitpass, L. and Havers, W. and Sieverts, H. and Berwanger, B. and Christiansen, H. and Warnat, P. and Brors, B. and Eils, J. and Eils, R. and Eggert, A..
Prediction of clinical outcome and biological characterization of neuroblastoma by expression profiling.
In
Oncogene,
Vol. 24,
No. 53,
Seiten 7902-12,
2005.
|